

REAL-TIME WEATHER

1.6.0
—

Documentation
—

Thank you for your
purchase!

PAGE 2

TABLE OF CONTENTS

 OVERVIEW & INSTALLATION

▪ Installation and Quick Start……………………………………. 3

▪ Enviro Integration………………………………………………... 6

▪ Tenkoku Integration…………...………………………………... 7

▪ Atmos Integration…………...……………………...…………... 8

▪ Expanse Integration…………………………………………… 10

▪ Help and Bug Report.....…...…...…………………………….. 11

▪ Feedback Form………………………………………………….12

SCRIPTING API

 ▪ Real-Time Weather Manager…………………………………13

▪ Weather Data……………………………………………………14

▪ Atlas Module………………………………………………….….16

▪ Weather For You Module………………………………………17

▪ Weather Underground Module…..…………..………………18

▪ Open Weather Map Service ………………………………….20

▪ Tomorrow.io Service ..…………………………………………..27

▪ Reverse Geocoding…………………………………………….34

▪ Platform Compatibility ………………………………………....36

▪ URP/HDRP Compatibility……………………………………….37

PAGE 3

OVERVIEW & INSTALLATION

INSTALLATION

Import the Real-Time Weather package and follow
these steps to get started:

STEP 1

—
On the Unity top bar, you will find a new tab “Real-
Time Weather”, so click on it and then select “Real-
Time Weather Manager”. A new GameObject will be
created in your scene with the
“RealTimeWeatherManager” component.

PAGE 4

STEP 2

—
If you don’t want the “Real-Time Weather Manager”
to be destroyed when other scenes are loaded, check
“Don’t Destroy on Load” in the “General Settings”

panel.

STEP 3

—
For Real-Time Weather mode there are 3 sources for
weather information in case one does not work. Also,
the user can choose the order of the weather
providers on the list from which the data is
requested, so that a provider can have a higher
priority than others.

STEP 4

—
In the “Location” section complete the “City” and
“Country” input fields for the location or use
geographical coordinates.

For the USA, you need to check the “United States
location” box then you will be able to fill in the “City”
and “State” input fields.

PAGE 5

STEP 5

—
To get real-time weather updates, check “Enable
auto weather update” and also enter an “update
frequency” which is measured in minutes.

STEP 6

—
Depending on what weather plugin you have in the
project, you can activate either the Enviro, Tenkoku,
Atmos or Expanse simulation. Simply click on the
corresponding button, and everything that the
weather simulation needs will be added to your
scene. If it detects that there is already a valid
simulation in the scene, it will try to use it instead of
creating a new one.

PAGE 6

ENVIRO INTEGRATION

ABOUT

Enviro - Sky and Weather is a complete and dynamic AAA
sky and weather solution!

With Enviro, you can simulate weather, the day-night
cycle, clouds, vegetation growth and seasons. It’s easy to set
up with wonderful results.

The current Real-Time Weather version supports
integration with Enviro, which can be imported from the
Unity Asset Store.

ACTIVATION

DEACTIVATION

 Real-Time Weather will
automatically detect the
presence of the Enviro
asset and will enable the
simulation controls.

Click the “Activate Enviro
Simulation” button to
simulate the weather
using Enviro. After that,
you will see that the
EnviroModule object has
been added to the scene.
Disable any light sources.

 Click the "Deactivate
Enviro Simulation" button
to disable weather
simulation using Enviro.
The EnviroModule will be
deleted from the scene and
the plugin will no longer
receive weather data.

Now you can remove the
Enviro related objects or, if
you wish, keep them for
future simulations.

PAGE 7

TENKOKU INTEGRATION

ABOUT

Tenkoku - Dynamic Sky brings completely dynamic high-
fidelity sky and weather rendering to Unity developers.

With Tenkoku you can simulate weather, the day-night
cycle, and clouds. It’s easy to set up with wonderful results.

The current Real-Time Weather version supports
integration with Tenkoku, which can be imported from the
Unity Asset Store.

ACTIVATION

DEACTIVATION

 Real-Time Weather will
automatically detect the
presence of the Tenkoku
asset and will enable the
simulation controls.

Click the “Activate
Tenkoku Simulation”
button to simulate the
weather using Tenkoku.
After that, you will see that
the Tenkoku Module
object has been added to

the scene. Disable any

other light sources.

 Click the "Deactivate
Tenkoku Simulation"
button to disable weather
simulation using Tenkoku.
The Tenkoku Module
object will be deleted from
the scene.

Now you can remove the
Tenkoku asset if you wish,
or keep it for future
simulations.

PAGE 8

 MASSIVE CLOUDS ATMOS-

VOLUMETRIC SKYBOX

ABOUT

Massive Clouds Atmos is an asset that provides the ability
to render the entire sky with volumetric effects. It allows
you to design the entire sky while adjusting for various
weather conditions and time zones in real time.

The current Real-Time Weather version supports
integration with Atmos, which can be imported from the
Unity Asset Store.

ACTIVATION

DEACTIVATION

 Real-Time Weather will
automatically detect the
presence of the Atmos
asset and will enable the
simulation controls.

Click the “Activate Atmos
Simulation” button to
simulate the weather
using Atmos.

After that, you need to
complete the Atmos Setup
and Scene Setup as
described in the Atmos
Settings section below.

 Click the "Deactivate
Atmos Simulation" button
to disable weather
simulation using Atmos.

The AtmosModule will be
deleted from the scene
and the plugin will no
longer receive weather
data.

The “Massive Clouds
Camera Effect” script will
be deleted from the
camera.

PAGE 9

ATMOS SETTINGS

In order to use Massive Clouds Atmos for weather
simulation, the following settings must be configured:

ATMOS SETUP WIZARD

—
Launch the Setup Wizard from the menu: Window ->
Massive Clouds Atmos -> Setup Wizard.

From the Project Settings, press the Fix Now button on the
Preloaded Shaders.

Open the Scene Setup and press the Fix Now button. The
setup wizard supports the appropriate setup for each
pipeline. Select the Renderer accordingly. For
Standalone, select Physics StandardRP - Natural - High
and for the Android platform, select Physics StandardRP
- Natural - Middle.

For the Android platform some optimizations can be done,
which are described in the Atmos plugin's documentation,
available here:

http://massive-clouds-
atmos.mewli.st/mca_optimization_en.html

SCENE SETUP

—
In the scene view, select the AtmosPad object and add the
reference to the light source.

Select the Camera object and check in the Inspector if it
has the MassiveCloudsCameraEffect script attached. Also,
check that the references to Massive Clouds and Sun are
set properly.

http://massive-clouds-atmos.mewli.st/mca_optimization_en.html
http://massive-clouds-atmos.mewli.st/mca_optimization_en.html

PAGE 10

E X P A N S E

EXPANSE INTEGRATION

 ABOUT

Expanse is a state-of-the-art volumetric tool for HDRP that
gives you the power to author beautiful skies, clouds, and
fog banks.

The current Real-Time Weather version supports
integration with Expanse, which can be imported from the
Unity Asset Store.

 ACTIVATION DEACTIVATION

 Real-Time Weather will
automatically detect the
presence of the Expanse
asset and will enable the
simulation controls.

Click the “Activate
Expanse Simulation”
button to simulate the
weather using Expanse.

Expanse needs to have the
following modules to be
detected:
DateTimeController,
ProceduralCloudVolume,
CreativeFog, Creative
Sūn.

 Then you will see that an
Expanse Module object
has been added to the
scene. Disable any other
light sources.

 Click the "Deactivate
Expanse Simulation"
button to disable weather
simulation using Expanse.

The Expanse Module
object will be deleted from
the scene.

Now you can remove the
Expanse asset if you wish,
or keep it for future
simulations.

PAGE 11

HELP & BUG REPORT

REPORT

This module will send an email to the Real-Time Weather
developers when an error appears in plugins used for
getting weather data or when a user wants to send an
email with some questions.

This pop-up is automatically activated whenever the
Weather For You module fails to obtain weather data or
whenever a service fails to obtain weather data. It can also
be activated by going to the “Real-time Weather
Manager” tab and selecting “Help” then “Bug Report”.

PAGE 12

Feedback Form

 FEEDBACK

This dialog can be opened from the toolbar by going to
the “Real-Time Weather” tab and selecting “Help” then
“Feedback Form”.

The module is used to send your feedback to the Real-
Time Weather developers.

PAGE 13

SCRIPTING API

REAL-TIME WEATHER MANAGER

The RealTimeWeatherManager class is implemented
using the Singleton design pattern and it manages the
main functionalities of the Real-Time Weather plugin. It
allows the weather data requests from the Atlas module,
Underground module and Weather For You module, and
it also manages the automatic weather data update and
weather simulation using third-party support
components: Enviro, Tenkoku, Massive Clouds Atmos and
Expanse.

Request weather data

—
The weather data request can be made using the following
function:

Receive weather data

—
Receiving current weather data can be done by subscribing
to the OnCurrentWeatherUpdate event. To receive
weather forecast data (hourly or daily), subscription to
OnHourlyWeatherUpdate and/or
OnDailyWeatherUpdate is required.

public void RequestWeather(string city, string country)

Example:

RealTimeWeatherManager.instance.RequestWeather("Paris", "France");

PAGE 14

Notify weather data changed

—
Send notifications with updated weather data to the
components that listen to the OnCurrentWeatherUpdate,
OnHourlyWeatherUpdate, and OnDailyWeatherUpdate
events.

WEATHER DATA

The WeatherData class is used to store and manage
weather data.

▪ Localization is a Localization class instance that
holds the localization data: city, country, latitude, and
longitude.

▪ DateTime is an instance of DateTime structure that
represents an instant in time, typically expressed as a
date and time of day.

▪ UtcOffset is an instance of TimeSpan structure that
represents the difference in hours and minutes from
Coordinated Universal Time (UTC) for a particular

public delegate void CurrentWeatherUpdate(WeatherData

weatherData);

public delegate void HourlyWeatherUpdate(List<WeatherData>

weatherData);

public event CurrentWeatherUpdate OnCurrentWeatherUpdate;

public event HourlyWeatherUpdate OnHourlyWeatherUpdate;

Example:
RealTimeWeatherManager.instance.OnCurrentWeatherUpdate +=

OnCurrentWeatherUpdate;

RealTimeWeatherManager.instance.OnHourlyWeatherUpdate +=

OnHourlyWeatherUpdate;

private void NotifyCurrentWeatherChanged(WeatherData

weatherData);

private void NotifyHourlyWeatherChanged(List<WeatherData>

weatherData);

private void NotifyDailyWeatherChanged(List<WeatherData>

weatherData);

PAGE 15

place and date.

▪ Wind is a Wind class instance that holds the wind data:
direction and speed. Speed is measured in km/h.

▪ Temperature is a float value that represents the
temperature in °C.

▪ WeatherState is a WeatherState enum value that
represents the weather state.

▪ Pressure(atmospheric pressure), also known as

barometric pressure, is a float value that represents
the pressure within the atmosphere of Earth measured
in millibars.

 ▪ Humidity is a float value that represents the humidity
as a percentage.

▪ TimeZone represents the current time zone of the
searched location in the following format:
“Continent/Country”.

▪ Precipitation is a float value that represents the
precipitation in mm.

▪ Dewpoint is the temperature to which air must be
cooled to become saturated with water vapor in °C.

▪ Visibility is a float value that represents the
visibility in km.

 public enum WeatherState
 {
 Clear,
 PartlyClear,
 Cloudy,
 PartlyCloudy,
 Mist,
 Thunderstorms,
 RainSnowPrecipitation,
 RainPrecipitation,
 SnowPrecipitation,
 Windy,
 PartlySunny,
 Sunny,
 Fair,
 }

PAGE 16

▪ IndexUV is a float value that represents the UV
(ultraviolet) index. The ultraviolet index is an
international standard measurement of the strength of
sunburn-producing ultraviolet radiation at a particular
place and time.

The weather data received from the services can be viewed
in the WeatherUI interface.

The WeatherUI Prefab can be found in Real-Time Weather
Manager/Prefabs/UI Prefabs. The information will be
displayed if the simulation settings have been set.

ATLAS MODULE

This module is responsible for downloading web pages
from https://www.weather-atlas.com and parsing them to
obtain weather information.

The webpage data is requested using an input containing
the non-abbreviated, complete names of the city and
country, for example: "Spain/Madrid”.

https://www.weather-atlas.com/

PAGE 17

The obtained data is parsed through the HtmlAgilityPack
HTML parser, a C# linked solution that transforms a plain
text into a parsable HTML node structure using tags
division.

Receive Atlas weather data

—
Receiving Atlas weather data can be done by subscribing to
the OnWebPageParsed delegate.

Receive Atlas exceptions

—
Receiving Atlas exceptions can be done by subscribing to
the OnExceptionRaised delegate.

The WeatherAtlasModule is instantiated in the scene as a
child of RealTimeWeatherManager. You can use this
module separately; the WeatherAtlasModulePrefab prefab
can be found in Real-Time Weather/Prefabs/Weather
Modules Prefabs.

public delegate void OnExceptionRaised(ExceptionType type,
string message);
public OnExceptionRaised;

Example:

_atlasModule.onExceptionRaised +=

 OnRequestWeatherServiceExceptionRaised;

public delegate void OnWebPageParsed(WeatherData webPageData);
public OnWebPageParsed;

Example:

_atlasModule.onWebPageParsed += OnReceivingAtlasWeatherData;

PAGE 18

WEATHER FOR YOU MODULE

This module is responsible for downloading web pages
from https://www.weatherforyou.com/ and parsing them
to obtain weather information.

The webpage data is requested using input data composed
of the name of the city/county and the abbreviated name of
the country, for example:
 “&place=liverpool&state=&country=gb”.

The obtained data is parsed through the HtmlAgilityPack
HTML parser, a C# linked solution that transforms a plain
text into a parsable HTML node structure using tags
division.

Receive WeatherForYou weather data

—
Receiving WeatherForYou weather data can be done by
subscribing to the OnWebPageParsed delegate.

Receive WeatherForYou exceptions

—
 Receiving WeatherForYou exceptions can be done by
subscribing to the OnExceptionRaised delegate.

The WeatherForYouModule is instantiated in the scene as
a child of RealTimeWeatherManager. You can use this
module separately; the prefab can be found in Real-Time
Weather/Prefabs/Weather Modules Prefabs.

public delegate void OnExceptionRaised(ExceptionType type,
string message);
public OnExceptionRaised

Example:
_weatherForYou.onExceptionRaised +=

OnRequestWeatherServiceExceptionRaised;

public delegate void OnWebPageParsed(WeatherData webPageData);
public OnWebPageParsed;

Example:

_weatherForYou.onWebPageParsed += OnReceivingWeatherForYouData;

https://www.weatherforyou.com/

PAGE 19

WEATHER UNDERGROUND MODULE

This module is responsible for downloading web pages
from https://www.wunderground.com/ and parsing them
to obtain weather information.

The webpage data is requested using input data composed
of the abbreviated name of the country and the name of the
city/county, for example: “fr/Paris”.

The obtained data is parsed through the HtmlAgilityPack
HTML parser, a C# linked solution that transforms a plain
text into a parsable HTML node structure using tags
division.

Receive Weather Underground weather data

—
Receiving Weather Underground weather data can be done
by subscribing to the OnWebPageParsed delegate.

Receive Weather Underground exceptions

—
 Receiving Weather Underground exceptions can be done
by subscribing to the OnExceptionRaised delegate.

The WeatherUndergroundModule is instantiated in the
scene as a child of RealTimeWeatherManager. You can use
this module separately; The
WeatherUndergroundModulePrefab prefab can be found
in Real-Time Weather/Prefabs/Weather Modules Prefabs.

public delegate void OnExceptionRaised(ExceptionType, string
message);
public OnExceptionRaised;

Example:

_undergroundModule.onExceptionRaised +=

OnRequestWeatherServiceExceptionRaised;

public delegate void OnWebPageParsed(WeatherData webPageData);
public OnWebPageParsed;

Example:

_undergroundModule.onWebPageParsed += OnReceivingUndergroundData;

https://www.wunderground.com/

PAGE 20

OPEN WEATHER MAP SERVICE

ABOUT

OpenWeatherMap [Link] is a paid service that offers the
opportunity to obtain real-time weather data through
miscellaneous HTTP requests to its server.

The server can be requested through more [APIs]

using the API key specific to your account. Real-

Time Weather Manager uses the [Current Weather

Data API] and [One Call API API].

The request is composed of? The API key, localization data
and optional parameters.

Current weather

Uses this link :
api.openweathermap.org/data/2.5/weather?q={city

name}&appid={API key}

 REQUEST METHODS PARAMETERS

 There are 4 modes of request:

▪ City name, state code

(applicable only for the US)
and country code

▪ City ID [cities.json]
▪ Latitude & longitude
▪ Zip code and country code

 There are 3 types of parameters:

▪ Language: en, fr, de, jp, ro,
etc.

▪ Units: standard, metric or
imperial

▪ Request mode represents
the 4 types of requests
presented.

https://openweathermap.org/
https://openweathermap.org/api
https://openweathermap.org/current
https://openweathermap.org/current
https://openweathermap.org/api/one-call-api
https://home.openweathermap.org/api_keys
http://bulk.openweathermap.org/sample/

PAGE 21

Weather forecast for a period of time

For Geographic Coordinates Request mode, the weather

forecast data can be requested for the next 48 hours with a
step of one hour or for the next 7 days with a daily forecast.

 The following link is used:

https://api.openweathermap.org/data/2.5/onecall?lat={lat}&lo

n={lon}&exclude={part}&appid={API key}

PARAMETERS

There is an additional optional parameter that can exclude
some parts of the weather data from the API response. The
parameter is exclude, and its value is a comma-delimited
list. Available values are current, minutely, hourly, daily,
and alerts. It has 3 default values: current, minutely,
and alerts. If weather data for the next 48 hours is wanted,
the exclude parameter will also contain the daily value.

INSPECTOR INTERFACE

https://home.openweathermap.org/api_keys

PAGE 22

OPENWEATHERMAP DATA

The OpenWeatherMap Data class is used to store and
manage the weather data from obtained by the service:

▪ Geographic Coordinates member class holds details
about the geographic positioning on the globe: latitude
and longitude.

▪ List<WeatherDetails> is a list with WeatherDetails
instances. Every instance has the following members:
ID (code of the weather state), main (the weather state
in string format), description (additional details) and
icon (a specific icon that appears on their webpage).

▪ Base represents the source from where the data was
obtained => stations, statistics.

▪ Main Weather is a class instance that holds the main
weather details: temperature, minimum temperature,
maximum temperature, pressure, humidity,
temperature feels_like, pressure at sea level and
pressure at ground level.

▪ Visibility is a float value that represents the distance
at which an object or light can be clearly discerned.

▪ Wind is a Wind class instance that holds the wind data:
direction, speed and gust.

▪ Clouds is a Clouds instance that holds cloud density
data (percentage) .

▪ Unix timestamp (dt) is long value that represents
the way to track time as a running total of seconds. This
value is added to epoch time (1st Jan, 1970) and
constructs the current date time.

▪ System Data is a class that holds some specific system
parameters like / such as: type, ID, message (logs),
country (the interrogated country), sunrise time and
sunset time.

▪ Timezone represents the UTC offset in seconds.
Example: for UTC +3:00 hours => 3 * 3600 seconds =>

PAGE 23

10800 seconds.
▪ CityID is an int value that represents the

corresponding city id for the interrogated location,
which can be found on city.list.json.gz.

▪ HTTPCode is an int value that represents the HTTP code
response from the server (200 => OK, 404 => Not
Found, etc.).

▪ City name is a string value that represents the city from
the interrogated location. This can be useful, for
example, when we request data using latitude &
longitude.

▪ Units is a Units enum value that represents the units
the data will be obtained in: Standard (speed =>
meter/sec, temperature => Kelvin), Metric (speed
=>meter/sec, temperature =>Celsius) or Imperial
(speed => miles/hour, temperature => Fahrenheit).

 OPENWEATHERONECALLAPIMAPDATA DATA

The OpenWeatherOneCallAPIMapData Data class is used
to store and manage the weather data obtained from the
One Call API service:

▪ Unix timestamp (dt) is long value that represents
the way to track time as a running total of seconds. This
value is added to epoch time (1st Jan, 1970) and
constructs the current date time.

▪ Geographic Coordinates member class holds details
about the geographic positioning on the globe: latitude
and longitude.

▪ TimezoneOffset represents the UTC offset in seconds.
Example: for UTC +3:00 hours => 3 * 3600 seconds =>
10800 seconds.

▪ List<HourlyWeather> is a list with HourlyWeather
instances. Every instance holds the main weather
details: unix timestamp, temperature, temperature
feels_like, pressure at sea level and pressure at ground
level, humidity, dew point, UVI, clouds, visibility, wind
speed, wind gust, wind degree, and a list of

http://bulk.openweathermap.org/sample/

PAGE 24

WeatherDetails.
▪ Timezone represents the name for the requested

location.

▪ List<DailyWeather> is a list with dailyWeather
instances. Every instance holds the main weather
details: unix timestamp, temperature, temperature
feels_like, pressure at sea level and pressure at ground
level, humidity, dew point, UVI, clouds, wind speed,
wind gust, wind degree, and a list of WeatherDetails.

▪ Units is a Units enum value that represents the units
the data will be obtained in: Standard (speed =>
meter/sec, temperature => Kelvin), Metric (speed
=>meter/sec, temperature =>Celsius) or Imperial
(speed => miles/hour, temperature => Fahrenheit).

PAGE 25

 REDIRECTING DATA OUTSIDE OUR PLUGIN

The module parses the weather data and afterwards, sends
it to the manager, but it can be also directed to other
plugins or your solution.

Receive OpenWeatherMap data

—
Receiving OpenWeatherMap data can be done by
subscribing to the OnServerResponse delegate from the
OpenWeatherMapModule class.

Receive OpenWeatherMapOneCallAPI data

—
Receiving OpenWeatherOneCallAPIMap data can be done
by subscribing to the OnServerOneCallAPIResponse
delegate from the OpenWeatherMapModule class.

Receive OpenWeatherMap exception

—
Receiving OpenWeatherMap exceptions can be done by
subscribing to the OnExceptionRaised.

public delegate void OnServerResponse(OpenWeatherData
weatherData);
public onServerResponse;

Example:
_openWeatherMapModule.OnServerResponse += OnReceivingOpenWeatherMapData;

public delegate void OnExceptionRaised(ExceptionType type, string
message);
public OnExceptionRaised

Example:
_openWeatherMapModule.onExceptionRaised+= OnOpenWeatherMapExceptionRaised;

public delegate void OnServerOneCallAPIResponse
(OpenWeatherOneCallAPIMapData weatherData);

public onServerOneCallAPIResponse;

Example:

_openWeatherMapModule.onServerOneCallAPIResponse +=

 OnReceivingOpenWeatherMapOneCallAPIData;

PAGE 26

CONVERTING DATA FOR SIMULATION

As long as Real-Time Weather Manager requests weather
data from Open Weather Map, then a class named Open
Weather Map Converter will be responsible for converting
the Open Weather Data structure to our default weather
data structure.

To convert Weather Forecast data for a period of 48 hours
or 7 days, a class named Open Weather One Call API Map
Converter will be responsible for converting the Open
Weather One Call API Data structure to a list of Weather
Data structure for each case (48 hours or 7 days).

PAGE 27

TOMORROW

ABOUT

Tomorrow.io is the world's leading All-in-One Weather
Intelligence Platform™ [Link], which offers the
opportunity to obtain real-time weather data.

The Tomorrow API is organized in a RESTful, stable
endpoint structure, administered over HTTPS response
codes and authentication. The API has predictable URLs,
request query and body parameters, and JSON-encoded
responses.

Access to the Tomorrow API requires a valid access key
with the right permissions.

REQUEST METHOD

PARAMETERS

 To request weather data
from Tomorrow, you must
make the following
settings in the Tomorrow
Module inspector:

▪ Specify a valid API key
in the Tomorrow API
key field. Requests not
properly authenticated
will return a 403-error
code;

▪ Specify latitude and
longitude (ISO 6709).

 The Tomorrow API will
automatically request the
core weather data such as
temperature, wind speed
and direction and so on. In
the "Weather Data
Settings" menu, check
what forecast information
and what additional
information you want to
request from the API. You
can choose from a set of
weather parameters related
to forecast, air quality and
pollen.

https://www.tomorrow.io/

PAGE 28

INSPECTOR INTERFACE

The TomorrowModule inspector contains three main
options:

▪ API Settings- are Tomorrow API settings, such as
access key;

▪ Location Settings - settings for the location from where
the weather information will be requested;

▪ Weather Data Settings- settings that define what
weather parameters will be requested from the API.

Additional parameters that provide hourly/daily forecast
and meteorological information related to air quality, and
pollen, must be checked to be requested from the API.
Otherwise, these parameters will have default values.

PAGE 29

Extra hourly and/or daily forecast can be set by enabling
corresponding checkbox. When a forecast is enabled,
hourly or daily length can be set.

 TOMORROW DATA

The TomorrowData class is used to store and manage the
weather data obtained from the Tomorrow service.

TomorrowData class

—
▪ latitude is a float value that represents a geographic

coordinate that specifies the north–south position of a
point on the Earth's surface. Latitude must be set
according to ISO 6709.

▪ longitude is a float value that represents a geographic
coordinate that specifies the east-west position of a point
on the Earth's surface. Longitude must be set according
to ISO 6709.

▪ data is a CoreData class instance that represents the
Tomorrow API data.

▪ warnings is a list of TomorrowWarning instances that
represents error JSON data.

TomorrowWeatherData class

—
▪ temperature is a float value that represents the

temperature in °C;

▪ temperatureApparent is a float value that represents
the temperature equivalent perceived by humans, caused
by the combined effects of air temperature, relative
humidity, and wind speed. Measured in percentages °C;

PAGE 30

▪ dewPoint- the temperature to which air must be cooled
to become saturated with water vapor. Measured in
percentages °C;

▪ humidity is a float value that represents the
concentration of water vapor present in the air.
Measured in percentages %;

 ▪ windSpeed- the fundamental atmospheric quantity
caused by air moving from high to low pressure, usually
due to changes in temperature. Measured in m/s;

▪ windDirection- the direction from which it originates,
measured in degrees counter-clockwise from due north;

▪ windGust- the maximum brief increase in the speed of
the wind, usually less than 20 seconds. Measured in m/s;

▪ pressureSurfaceLevel- the force exerted against a
surface by the weight of the air above the surface (at the
surface level). Measured in hPa;

▪ pressureSeaLevel- the force exerted against a surface
by the weight of the air above the surface (at the mean sea
level). Measured in hPa;

▪ visibility- the measure of the distance at which an
object or light can be clearly discerned;

▪ cloudCover- the fraction of the sky obscured by clouds
when observed from a particular location. Measured in
percentages %;

▪ precipitationIntensity- the amount of
precipitation that falls over time, covering the ground in
a period of time. Measured in mm/hr;

▪ precipitationProbability- the chance of
precipitation that at least some minimum quantity of
precipitation will occur within a specified forecast period
and location. Measured in percentages %.

▪ particulateMatter25- the concentration of
atmospheric particulate matter (PM) that have a
diameter of fewer than 2.5 micrometers;

PAGE 31

▪ pollutantO3- the concentration of surface Ozone (O3).
Measured in pp;

▪ pollutantNO2- the concentration of surface Nitrogen
Dioxide (NO2). Measured in ppb;

▪ pollutantCO- the concentration of surface Carbon
Monoxide (CO2). Measured in ppb;

▪ pollutantSO2- the concentration of surface Sulfur
Dioxide (SO2). Measured in ppb;

▪ treeIndex- the Tomorrow index representing the
extent of grains of overall tree pollen or mold spores in a
cubic meter of the air;

▪ grassIndex- the Tomorrow index representing the
extent of grains of overall grass pollen or mold spores in
a cubic meter of the air;

▪ weedIndex- the Tomorrow index representing the
extent of grains of overall weed pollen or mold spores in
a cubic meter of the air;

▪ weatherCode- the WeatherCode enum value that
contains the most prominent weather condition.

▪ precipitationType- the PrecipitationType enum
value that specifies the various types of precipitation
which is falling to ground level;

public enum WeatherCode
 {
 [Description("0: Unknown")] Unknown = 0,
 [Description("1000: Clear")] Clear = 1000,
 [Description("1001: Cloudy")] Cloudy = 1001,
 [Description("1100: Mostly Clear")] MostlyClear = 1100,
 [Description("1101: Partly Cloudy")] PartlyCloudy = 1101,
 [Description("1102: Mostly Cloudy")] MostlyCloudy = 1102,
 [Description("2000: Fog")] Fog = 2000,
 [Description("2100: Light Fog")] LightFog = 2100,
 [Description("3000: Light Wind")] LightWind = 3000,
 [Description("3001: Wind")] Wind = 3001,
 [Description("3002: Strong Wind")] StrongWind = 3002,
 [Description("4000: Drizzle")] Drizzle = 4000,
 [Description("4001: Rain")] Rain = 4001,
 [Description("4200: Light Rain")] LightRain = 4200,
 [Description("4201: Heavy Rain")] HeavyRain = 4201,
 [Description("5000: Snow")] Snow = 5000,
 [Description("5001: Flurries")] Flurries = 5001,
 [Description("5100: Light Snow")] LightSnow = 5100,
 [Description("5101: Heavy Snow")] HeavySnow = 5101,
 [Description("6000: Freezing Drizzle")] FreezingDrizzle = 6000,
 [Description("6001: Freezing Rain")] FreezingRain = 6001,
 [Description("6200: Light Freezing Rain")] LightFreezingRain = 6200,
 [Description("6201: Heavy Freezing Rain")] HeavyFreezingRain = 6201,
 [Description("7000: Ice Pellets")] IcePellets = 7000,
 [Description("7101: Heavy Ice Pellets")] HeavyIcePellets = 7101,
 [Description("7102: Light Ice Pellets")] LightIcePellets = 7102,
 [Description("8000: Thunderstorm")] Thunderstorm = 8000
 }

PAGE 32

 REQUEST AND ERROR HANDLING

The Tomorrow API is organized in a RESTful, stable
endpoint structure, administered over HTTPS response
codes and authentication. The API has predictable URLs
composed of the following main elements:

▪ Url: https://api.tomorrow.io/v4/timelines;

▪ apikey;

▪ location: latitude and longitude;

▪ fields: temperature, dewPoint, humidity, and so on;

▪ timesteps: current, 1h, 1d (forecast).

▪ endTime: forecast end time (eg "2022-03-20T14:09:50Z")

Receive Tomorrow data

—
Receiving Tomorrow data can be done by subscribing to the
OnTomorrowDataSent delegate from TomorrowModule
class.

Receive Tomorrow exception

—
Receiving Tomorrow exceptions can be done by
subscribing to the OnTomorrowExceptionRaised.

Tomorrow API uses conventional HTTP response codes to
indicate the outcome of an API request. Codes in the 2xx
range indicate success, 4xx category indicates errors in the
provided information and 5xx codes imply server error.

public delegate void OnTomorrowDataSent(TomorrowData tomorrowData);

public onTomorrowDataSent;

Example:

_tomorrowModule.onTomorrowDataSent+=OnReceivingTomorrowWeatherData;

public delegate void OnTomorrowExceptionRaised(string exceptionMessage);

public OnTomorrowExceptionRaised onTomorrowExceptionRaised;

Example:

_tomorrowModule.onTomorrowExceptionRaised +=OnTomorrowExceptionRaised

https://api.tomorrow.io/v4/timelines

PAGE 33

 CONVERTING TOMORROW DATA

In order to simulate the weather using Tomorrow
meteorological data and third-party plugins: Enviro,
Tenkoku, and Atmos, the Tomorrow data must be
converted to Real-Time weather data. In other words,
TomorrowData class must be cast to the WeatherData
class.

Data conversion can be performed using the
ConvertCurrentTomorrowDataToRtwData,
ConvertHourlyTomorrowDataToRtwData or
ConvertDailyTomorrowDataToRtwData function from
the TomorrowDataConverter class.

Based on timestep,
ConvertCurrentTomorrowDataToRtwData will convert
only current timestep data and return WeatherData,
ConvertHourlyTomorrowDataToRtwData/
ConvertDailyTomorrowDataToRtwData will convert only
1h/1d timestep data and return a WeatherData list.

Due to differences in the weather data structure, the
IndexUV will have a default value after conversion.

Once the data conversion is complete, the notification
function can be invoked to update the system weather data.

Example:

NotifyCurrentWeatherChanged(rtwWeatherData);

NotifyHourlyWeatherChanged(rtwWeatherDataList);
NotifyDailyWeatherChanged(rtwWeatherDataList);

TomorrowDataConverter tomorrowDataConverter = new
TomorrowDataConverter(tomorrowData);

Example:

WeatherData rtwCurrentWeatherData =

TomorrowDataConverter.ConvertCurrentTomorrowDataToRtwData());

List<WeatherData> rtwHourlyWeatherData =

TomorrowDataConverter.ConvertHourlyTomorrowDataToRtwData());

List<WeatherData> rtwDailyWeatherData =

TomorrowDataConverter.ConvertDailyTomorrowDataToRtwData());

PAGE 34

REVERSE GEOCODING

ABOUT

Reverse geocoding is the process of back coding of
geographic coordinates (latitude, longitude) to precise
locality information.

The Free Client-side Reverse Geocoding to City API was
used to implement the reverse geocoding component. This
API is a free version of Reverse Geocoding to City API.
More information about this API is available here:
https://www.bigdatacloud.com/geocoding-apis/free-
reverse-geocode-to-city-api.

Request method

—
To use the reverse geocoding functionality, a coroutine
must be created, as in the example below, which calls
RequestGeocodingInformation function from the
ReverseGeocoding class.

The result of the reverse geocoding function is a
GeocodingData object that contains data such as city
name, country name, continent, and so on.

private IEnumerator GetGeocodingInformation(float latitude, float
longitude)
{

ReverseGeocoding reverseGeocoding = new ReverseGeocoding();
CoroutineWithData reverseGeoCoroutine = new CoroutineWithData(this,
reverseGeocoding.RequestGeocodingInformation(latitude, longitude));

yield return reverseGeoCoroutine.Coroutine;

GeocodingData reverseGeoData =
(GeocodingData)reverseGeoCoroutine.Result;

 if (reverseGeoData != null)
 {
 Debug.Log("City=" + reverseGeoData.City);
 Debug.Log("Country=" + reverseGeoData.CountryName);
 }
}

https://www.bigdatacloud.com/geocoding-apis/free-reverse-geocode-to-city-api
https://www.bigdatacloud.com/geocoding-apis/free-reverse-geocode-to-city-api

PAGE 35

GEOCODING DATA

The GeocodingData class is used to store and manage the
geocoding information obtained from the FREE Client Side
Reverse Geocoding to City API.

▪ latitude is a float value that represents a geographic
coordinate that specifies the north–south position of a
point on the Earth's surface. Latitude must be set
according to ISO 6709.

▪ longitude is a float value that represents a geographic
coordinate that specifies the east-west position of a
point on the Earth's surface. Longitude must be set
according to ISO 6709.

▪ continent localized Continent name in the requested
language.

▪ countryName is a string value that represents the
localized country name in the requested language.

▪ countryCode is a string value that represents the
country code as defined by ISO 3166-1 standard.

▪ city is a string value that represents the localised city
name in the requested language, if available.

▪ locality is a string value that represents the smallest
geographic area recognized to which the target belongs.

▪ principalSubdivision is a string value that
represents the localised principal subdivision name in
the requested language.

▪ principalSubdivisionCode is a string value that
represents the principal subdivision code as defined by
ISO 3166-2 standard.

▪ postcode is a string value that represents the postcode.

▪ localityInfo is detailed reverse geocoded locality
information

PAGE 36

PLATFORM COMPATIBILITY

REAL-TIME WEATHER MANAGER DLL

Real-Time Weather is a stable solution for the following
platforms:

• Windows

• MacOS

• Linux/Ubuntu (UNIX)

• Android

• iOS

Only one Real-Time Manager DLL exists in the project,
that supports all mentioned platforms.

The DLL can be found in “Real-Time Weather\Third

Party\RealTimeWeather\” path.

PAGE 37

 URP/HDRP COMPATIBILITY

PLUGIN COMPATIBILITY INFORMATION

Currently integrated plugins URP/HDRP support status:

• Enviro

◦ Compatible with both URP/HDRP 7.5+;

◦ Scriptable RPs supported from Unity version 2019.4.26f1;

• Tenkoku

◦ Only compatible with Standard RP;

◦ Scriptable RPs (URP/HDRP) are NOT currently supported;

• Massive Clouds – Atmos

◦ Standard RP supported from Unity version 2018.4+;

◦ URP/HDRP supported from 2019.3+;

◦ VR related information:

▪ URP: only Single Pass Rendering supported;

▪ HDRP: NOT currently supported for VR;

• Expanse

◦ HDRP supported from Unity version 2020.1.17+;

Unsupported plugins will be signaled with a warning

message in the Inspector panel:

